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Abstract
We give a variational proof of the existence of infinitely many bound states
below the continuous spectrum for some weak perturbations of a class of spin–
orbit Hamiltonians including the Rashba and Dresselhaus Hamiltonians.

PACS numbers: 71.70.Ej, 73.63.Hs

In the recent paper [3] Chaplik and Magarill have discovered a surprising fact: the Rashba
Hamiltonian HR ,

HR =
(

p2 αR(py + ipx)

αR(py − ipx) p2

)

(the real parameter αR is the Rashba constant expressing the strength of the spin–orbit coupling
[2, 7]) perturbed by a short-range rotationally symmetric negative potential has an infinite
number of eigenvalues below the threshold of the continuous spectrum. More precisely, for a
rotationally symmetric shallow potential well V with mUR2/h̄2 � 1, where m is the effective
mass and U and R are the depth and radius of the well, respectively, in [3] a system of equations
was derived to be satisfied by the eigenvalues, and it was shown (using the pole approximation
for the calculation of some integrals) that the system has an infinite number of solutions below
the continuous spectrum of HR + V .

In the present communication we are going to provide a strict mathematical justification
for the existence of infinitely many bound states below the continuous spectrum for short-range
perturbations of a much larger class of spin–orbit Hamiltonians, which includes, in particular,
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the above Rashba Hamiltonian as well as the Dresselhaus Hamiltonian [7],

HD =
(

p2 −αD(px + ipy)

−αD(px − ipy) p2

)
(here αD , a real parameter, is the Dresselhaus constant). Our technique is elementary and
uses the max–min principle in the spirit of [8]. Moreover, the potential well V can be
non-symmetric, and ‘shallow’ in our context means V ∈ L1.

We denote by H the Hilbert space L2(R2) ⊗ C
2 of two-dimensional spinors; by F

we denote the Fourier transform F : L2(R2) → L2(R2); then F2 := F ⊗ 1
C

2 is the
Fourier transform in H. Let H0 be a self-adjoint operator in H whose Fourier transform
Ĥ 0 := F2H0F−1

2 is the multiplication by the matrix

Ĥ 0(p) =
(

p2 A(p)

A∗(p) p2

)
, p ∈ R

2, (1)

where A is a continuous complex function on R
2, star (*) means the complex conjugation and,

as usual, p := |p|. Obviously, H0 is self-adjoint. The Rashba and Dresselhaus Hamiltonians
above have the form (1) with a linear A. In generalizing the linearity we assume

lim sup
p→∞

|A(p)|
p2

< 1. (2)

Clearly, H0 has no discrete spectrum; its spectrum is the union of the ranges of two functions
λ± (dispersion laws): λ±(p) = p2 ± |A(p)|, hence spec H0 = [κ, +∞), where κ := inf{p2 −
|A(p)| : p ∈ R

2} > −∞. Moreover, there is a unitary matrix M(p) depending continuously
on p ∈ R

2 such that

M(p)Ĥ 0(p)M∗(p) =
(

λ+(p) 0
0 λ−(p)

)
, p ∈ R

2. (3)

Denote S := {p ∈ R
2 : λ−(p) = κ}; this is a non-empty compact set. We will assume

that

the function |A(p)| is of class C2 in a neighbourhood of S. (4)

For the Rashba and Dresselhaus Hamiltonians one has κ = −α2
J

/
4 (J = R,D) and S is the

circle {p : 2p = |αJ |}; in these cases S is called the loop of extrema. The condition (4) is
obviously satisfied for these Hamiltonians.

The two conditions (2) and (4) imply that for every p0 ∈ S there is a constant c > 0 such
that we have

0 � λ−(p) − κ � c(p − p0)
2 (5)

for all p ∈ R
2.

Now let V be a real-valued scalar potential from Lp(R2) with some p > 1. Using
the Sobolev inequality and an explicit form for the Green function of −� we see that
V (−� + E)−1 with E > 0 is a Hilbert–Schmidt operator; therefore, V is a compact perturbation
of (−�) ⊕ (−�) (we denote V ⊕ V = V I

C
2 , where I

C
2 is the identity operator in C

2, by
the symbol V since this notation does not lead to confusion). Using (2) it is easy to show
that the domains of (−�) ⊕ (−�) and H0 coincide and the graph norms in these domains are
equivalent. Hence, V is a relatively compact perturbation of H0. As a result, we get that the
operator H := H0 + V is well defined and that specessH = [κ, +∞).

Below, for a distribution f by f̂ we denote its Fourier transform. To avoid mixing
terminology, an Hermitian n×n matrix C will be called positive definite if 〈ξ |Cξ 〉 > 0 for any
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non-zero ξ ∈ C
n, and will be called positive semi-definite if the above equality is non-strict.

By analogy one introduces negative definite and negative semi-definite matrices.

Theorem 1. Let N ∈ N. Assume that V ∈ L1(R2) and that V̂ satisfies the following condition:
there are N points p1, . . . , pN ∈ S such that the matrix (V̂ (pm − pn))1�m,n�N is negative
definite. Then H has at least N eigenvalues, counting multiplicity, below κ .

Proof. According to the max–min principle, it is sufficient to show that we can find N vectors
�m ∈ H,m = 1, . . . , N , such that the matrix with the entries 〈�m|(H−κ)�n〉, 1 � m, n � N ,
is negative definite; the vectors �m are then a posteriori linearly independent.

Denote fa(x) := exp
(− 1

2 |x|a), x ∈ R
2, with a > 0. As observed in [8],∫

R
2
|∇fa(x)|2 dx = π

2
a. (6)

Furthermore, by the Lebesgue dominated convergence theorem,

lim
a→0

∫
R

2
V (x)|fa(x)|2 dx = e−1

∫
R

2
V (x) dx. (7)

Let f̂ a be the Fourier transform of fa . Take spinors �m such that their Fourier transforms
�̂m are of the form �̂m(p) = M(p)ψm(p), where

ψm(p) =
(

0
f̂ a(p − pm)

)
(8)

and M(p) is taken from (3). We show that if a is sufficiently small, then the matrix
(〈�m|(H − κ)�n〉) is negative definite. For this purpose it is sufficient to show that

lim
a→0

〈�m|(H0 − κ)�n〉 = 0, (9)

lim
a→0

〈�m|V �n〉 = 2π e−1V̂ (pm − pn) (10)

for all (m, n).
By definition of �m one has

|〈�m|(H0 − κ)�n〉| =
∣∣∣∣
∫

R
2
(λ−(p) − κ)f̂ ∗

a(p − pm)f̂ a(p − pn) dp

∣∣∣∣
�

[∫
R

2
(λ−(p) − κ)|f̂ a(p − pm)|2 dp

] 1
2
[∫

R
2
(λ−(p) − κ)|f̂ a(p − pn)|2 dp

] 1
2

.

On the other hand, by (5) and (6) one has

0 �
∫

R
2
(λ−(p) − κ)|f̂ a(p − pm)|2 dp

� c

∫
R

2
(p − pm)2|f̂a(p − pm)|2 dp = c

∫
R

2
p2|f̂a(p)|2 dp = π

2
ca,

which proves (9). As for (10), one has

〈�m|V �n〉 =
∫

R
2

∫
R

2
〈�̂m(p)|V̂ (p − q)�̂n(q)〉 dp dq

=
∫

R
2

∫
R

2

〈
ψm(p)|V̂ (p − q)ψn(q)〉 dp dq
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since the matrices V̂ (p − q) and M(p) commute. On the other hand,∫
R

2

∫
R

2
〈ψm(p)|V̂ (p − q)ψn(q)〉 dp dq

=
∫

R
2

∫
R

2
V̂ (p − q)f̂ ∗

a (p − pm)f̂a(q − pn) dp dq

=
∫

R
2
V (x) ei(pm−pn)x

∣∣fa(x)
∣∣2

dx
a→0−→ 2π e−1V̂ (pm − pn).

The proof is complete. �

Let us list several corollaries.

Corollary 2. If
∫

R
2 V (x) dx < 0, then H has at least one eigenvalue below κ .

Proof. Since S is non-empty, it remains to note that V̂ (0) ≡ 1
2π

∫
R

2 V (x) dx. �

Note that taking A = 0 we recover a result of Simon: a weak negative perturbation of the
free Hamiltonian −� in two dimensions always has a bound state below the threshold of the
continuous spectrum [6].

Below by #S we denote the number of points in S, if S is finite, and ∞, otherwise.

Corollary 3. Let V be non-positive and non-vanishing on a set of positive measure. Then H
has at least #S eigenvalues below κ counting multiplicities.

Proof. It is sufficient to show that the matrix (V̂ (pm−pn))1�m,n�N is negative definite for every
choice of points p1, . . . , pN ∈ R

2. By the Bochner theorem, −∑
mn V̂ (pm − pn)ξ

∗
mξn � 0 for

any (ξm) ∈ C
N and it remains to note that

∑
mn V̂ (pm − pn)ξ

∗
mξn �= 0 for (ξm) �= 0. In fact, if∑

mn V̂ (pm − pn)ξ
∗
mξn = 0, then∫

R
2

∣∣∣∣∣
∑
m

ξm eipmx

∣∣∣∣∣
2

V (x) dx = 0;

therefore,
∑

m ξmeipmx = 0 on the support of V . Since exponents eipmx are real-analytic in x
and

∑
m ξmeipmx = 0 on a set of non-zero Lebesgue measure, the equality

∑
m ξmeipmx = 0

is valid everywhere on R
2. On the other hand, eipmx are linearly independent, and we obtain

ξm = 0 for all m. �

By corollary 3, perturbations of both the Rashba and Dresselhaus Hamiltonians by negative
potentials from Lp ∩ L1, p > 1, have infinitely many eigenvalues below the threshold of the
continuous spectrum. Another important example where corollary 3 can be applied is the
Hamiltonian with both Rashba and Dresselhaus terms:

HRD =
(

p2 αR(py + ipx) − αD(px + ipy)

αR(py − ipx) − αD(px − ipy) p2

)
,

which is used for describing the ballistic spin transport through a two-dimensional mesoscopic
metal/semiconductor/metal double junction in the presence of spin–orbit interaction [5]. In
this case κ = −(|αR|2 + |αD|2)/4, and S contains exactly two points: S = {p0,−p0}, with

p0 =



1
2
√

2
(αR + αD,−αR − αD), if αRαD > 0,

1
2
√

2
(αR − αD, αR − αD), if αRαD < 0.

In virtue of corollary 3, HRD + V for negative V has at least two eigenvalues below κ .
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We note that theorem 1 delivers some quantitative information on the eigenvalues. If
µ1 � µ2 � · · · � µN are the solutions to det(Va − µGa) = 0, where Va (respectively, Ga)
is the matrix with the entries 〈�m|V �n〉 (respectively, 〈�m|�n〉), 1 � m, n � N , then, for
sufficient small a, the nth eigenvalue En of H (1 � n � N) obeys the estimate En � µn < κ .

It is worth noting that the class of perturbations for which the above machinery works
contains singular perturbations supported on sets of zero Lebesgue measure [1], in particular,
the Dirac δ-functions supported by curves. The latter class of ‘potentials’ has been used e.g. in
[4] for studying the effect of spin–orbit interaction on bound states of electrons. Nevertheless,
accurate demonstrations in this case require rather cumbersome purely technical details and
are outside of the scope of the communication. We remark only that HR or HD perturbed by the
Dirac δ-function supported by a circle has infinite number of eigenvalues below the threshold
of the continuum spectrum. On the other hand, point perturbations of these Hamiltonians with
one-point supports have exactly one bound state below the continuum.
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